Function reference
-
doubling_time() - Doubling time from growth rate
-
multinomial_nnet_model() - Multinomial time-series model.
-
normalise_incidence() - Calculate a normalised incidence rate per capita
-
normalise_incidence.incidence() - Calculate a normalised incidence rate per capita
-
normalise_incidence.proportion() - Calculate a normalised incidence rate per capita
-
normalise_proportion() - Calculate a normalised risk ration from proportions
-
poisson_glm_model() - Poisson time-series model.
-
poisson_locfit_model() - Poisson time-series model.
-
proportion_glm_model() - Binomial time-series model.
-
proportion_locfit_model() - A binomial proportion estimate and associated exponential growth rate
-
rt_epiestim() - EpiEstim reproduction number
-
rt_from_growth_rate() - Wallinga-Lipsitch reproduction number
-
rt_from_incidence() - Reproduction number from modelled incidence
-
geom_events() - Add time series event markers to a timeseries plot.
-
plot_growth_phase() - Plot an incidence or proportion vs. growth phase diagram
-
plot_growth_rate() - Growth rate timeseries diagram
-
plot_incidence() - Plot an incidence timeseries
-
plot_multinomial() - Plot a multinomial proportions mode
-
plot_proportion() - Plot a proportions timeseries
-
plot_rt() - Reproduction number timeseries diagram
-
as.Date(<time_period>)as.POSIXct(<time_period>) - Convert time period to dates
-
as.time_period()c(<time_period>)`[`(<time_period>)`[<-`(<time_period>)`[[`(<time_period>)`[[<-`(<time_period>)is.time_period()print(<time_period>) - Convert to a time period class
-
cut_date() - Places a set of dates within a regular time series
-
date_seq(<Date>) - Expand a date vector to the full range of possible dates
-
date_seq() - Create the full sequence of values in a vector
-
date_seq(<time_period>) - Expand a
time_periodvector to the full range of possible times
-
date_to_time() - Convert a set of dates to numeric timepoints
-
fdmy() - Format date as dmy
-
is.Date() - Check whether vector is a date
-
labels(<time_period>) - Label a time period
-
max_date() - The maximum of a set of dates
-
min_date() - The minimum of a set of dates
-
time_aggregate() - Aggregate time series data preserving the time series
-
time_summarise() - Summarise data from a line list to a time-series of counts.
-
time_to_date() - Convert a set of timepoints to dates
-
covid_infectivity_profile - The covid_infectivity_profile dataframe structure specification
-
england_consensus_growth_rate - The SPI-M-O England consensus growth rate
-
england_consensus_rt - The SPI-M-O England consensus reproduction number
-
england_covid - Daily COVID-19 case counts by age group in England
-
england_covid_pcr_positivity - England COVID-19 PCR test positivity
-
england_demographics - England demographics
-
england_events - Key dated in the COVID-19 response in England
-
england_variants - Counts of COVID-19 variants
-
germany_covid - Weekly COVID-19 case counts by age group in Germany
-
germany_demographics - Germany demographics
-
breaks_log1p() - A scales breaks generator for log1p scales
-
date_seq(<numeric>) - Create the full sequence of values in a vector
-
england_covid_proportion - England COVID by age group for ascertainment
-
england_nhs_app - NHS COVID-19 app data
-
england_ons_infection_survey - The england_ons_infection_survey dataset
-
logit_trans() - logit scale
-
reband_discrete() - Reband any discrete distribution
-
scale_y_log1p() - A log1p y scale
-
scale_y_logit() - A logit y scale
-
wallinga_lipsitch() - Calculate the reproduction number from a growth rate estimate and an infectivity profile