Function reference
-
doubling_time()
- Doubling time from growth rate
-
multinomial_nnet_model()
- Multinomial time-series model.
-
normalise_incidence()
- Calculate a normalised incidence rate per capita
-
normalise_incidence.incidence()
- Calculate a normalised incidence rate per capita
-
normalise_incidence.proportion()
- Calculate a normalised incidence rate per capita
-
normalise_proportion()
- Calculate a normalised risk ration from proportions
-
poisson_glm_model()
- Poisson time-series model.
-
poisson_locfit_model()
- Poisson time-series model.
-
proportion_glm_model()
- Binomial time-series model.
-
proportion_locfit_model()
- A binomial proportion estimate and associated exponential growth rate
-
rt_epiestim()
- EpiEstim reproduction number
-
rt_from_growth_rate()
- Wallinga-Lipsitch reproduction number
-
rt_from_incidence()
- Reproduction number from modelled incidence
-
geom_events()
- Add time series event markers to a timeseries plot.
-
plot_growth_phase()
- Plot an incidence or proportion vs. growth phase diagram
-
plot_growth_rate()
- Growth rate timeseries diagram
-
plot_incidence()
- Plot an incidence timeseries
-
plot_multinomial()
- Plot a multinomial proportions mode
-
plot_proportion()
- Plot a proportions timeseries
-
plot_rt()
- Reproduction number timeseries diagram
-
as.Date(<time_period>)
as.POSIXct(<time_period>)
- Convert time period to dates
-
as.time_period()
c(<time_period>)
`[`(<time_period>)
`[<-`(<time_period>)
`[[`(<time_period>)
`[[<-`(<time_period>)
is.time_period()
print(<time_period>)
- Convert to a time period class
-
cut_date()
- Places a set of dates within a regular time series
-
date_seq(<Date>)
- Expand a date vector to the full range of possible dates
-
date_seq()
- Create the full sequence of values in a vector
-
date_seq(<time_period>)
- Expand a
time_period
vector to the full range of possible times
-
date_to_time()
- Convert a set of dates to numeric timepoints
-
fdmy()
- Format date as dmy
-
is.Date()
- Check whether vector is a date
-
labels(<time_period>)
- Label a time period
-
max_date()
- The maximum of a set of dates
-
min_date()
- The minimum of a set of dates
-
time_aggregate()
- Aggregate time series data preserving the time series
-
time_summarise()
- Summarise data from a line list to a time-series of counts.
-
time_to_date()
- Convert a set of timepoints to dates
-
covid_infectivity_profile
- The covid_infectivity_profile dataframe structure specification
-
england_consensus_growth_rate
- The SPI-M-O England consensus growth rate
-
england_consensus_rt
- The SPI-M-O England consensus reproduction number
-
england_covid
- Daily COVID-19 case counts by age group in England
-
england_covid_pcr_positivity
- England COVID-19 PCR test positivity
-
england_demographics
- England demographics
-
england_events
- Key dated in the COVID-19 response in England
-
england_variants
- Counts of COVID-19 variants
-
germany_covid
- Weekly COVID-19 case counts by age group in Germany
-
germany_demographics
- Germany demographics
-
breaks_log1p()
- A scales breaks generator for log1p scales
-
date_seq(<numeric>)
- Create the full sequence of values in a vector
-
england_covid_proportion
- England COVID by age group for ascertainment
-
england_nhs_app
- NHS COVID-19 app data
-
england_ons_infection_survey
- The england_ons_infection_survey dataset
-
logit_trans()
- logit scale
-
reband_discrete()
- Reband any discrete distribution
-
scale_y_log1p()
- A log1p y scale
-
scale_y_logit()
- A logit y scale
-
wallinga_lipsitch()
- Calculate the reproduction number from a growth rate estimate and an infectivity profile