Skip to contents

Calculate a reproduction number estimate from growth rate using the methods described in the vignette "Estimating the reproduction number from modelled incidence" and using an empirical generation time distribution.

Usage

rt_from_incidence(df = i_incidence_model, ip = i_infectivity_profile)

Arguments

df

Count data

A dataframe containing the following columns:

  • time (as.time_period + group_unique) - A (usually complete) set of singular observations per unit time as a `time_period`

  • incidence.fit (double) - an estimate of the incidence rate on a log scale

  • incidence.se.fit (double) - the standard error of the incidence rate estimate on a log scale

  • incidence.0.025 (positive_double) - lower confidence limit of the incidence rate (true scale)

  • incidence.0.5 (positive_double) - median estimate of the incidence rate (true scale)

  • incidence.0.975 (positive_double) - upper confidence limit of the incidence rate (true scale)

No mandatory groupings.

No default value.

ip

Infectivity profile

A dataframe containing the following columns:

  • boot (anything) - a bootstrap identifier

  • time (positive_double) - the end of the time period (in days)

  • probability (proportion) - the probability of infection between previous time period until `time`

Must be grouped by: boot (exactly).

A default value is defined.

Value

A dataframe containing the following columns:

  • time (as.time_period + group_unique) - A (usually complete) set of singular observations per unit time as a time_period

  • rt.fit (double) - an estimate of the reproduction number

  • rt.se.fit (double) - the standard error of the reproduction number

  • rt.0.025 (double) - lower confidence limit of the reproduction number

  • rt.0.5 (double) - median estimate of the reproduction number

  • rt.0.975 (double) - upper confidence limit of the reproduction number

No mandatory groupings.

No default value.

Examples

df = growthrates::england_covid %>%
  time_aggregate(count=sum(count)) %>%
    poisson_locfit_model()


if (FALSE) {
  # not run
  tmp2 = df %>% rt_from_incidence()
}