The unit of doubling times is always days.
Arguments
- x
a dataframe calculated from either proportion or incidence growth rate calculations:
e.g. A dataframe containing the following columns:
time (as.time_period + group_unique) - A (usually complete) set of singular observations per unit time as a
time_period
incidence.fit (double) - an estimate of the incidence rate on a log scale
incidence.se.fit (double) - the standard error of the incidence rate estimate on a log scale
incidence.0.025 (positive_double) - lower confidence limit of the incidence rate (true scale)
incidence.0.5 (positive_double) - median estimate of the incidence rate (true scale)
incidence.0.975 (positive_double) - upper confidence limit of the incidence rate (true scale)
growth.fit (double) - an estimate of the growth rate
growth.se.fit (double) - the standard error the growth rate
growth.0.025 (double) - lower confidence limit of the growth rate
growth.0.5 (double) - median estimate of the growth rate
growth.0.975 (double) - upper confidence limit of the growth rate
No mandatory groupings.
No default value.
OR
A dataframe containing the following columns:
time (as.time_period + group_unique) - A (usually complete) set of singular observations per unit time as a
time_period
proportion.fit (double) - an estimate of the proportion on a logit scale
proportion.se.fit (double) - the standard error of proportion estimate on a logit scale
proportion.0.025 (proportion) - lower confidence limit of proportion (true scale)
proportion.0.5 (proportion) - median estimate of proportion (true scale)
proportion.0.975 (proportion) - upper confidence limit of proportion (true scale)
relative.growth.fit (double) - an estimate of the relative growth rate
relative.growth.se.fit (double) - the standard error the relative growth rate
relative.growth.0.025 (double) - lower confidence limit of the relative growth rate
relative.growth.0.5 (double) - median estimate of the relative growth rate
relative.growth.0.975 (double) - upper confidence limit of the relative growth rate
No mandatory groupings.
No default value.
- ...
not used
Value
the same dataframe with additional columns for doubling time or relative doubling time plus confidence intervals.
Examples
growthrates::england_covid %>%
growthrates::poisson_locfit_model(window=21) %>%
growthrates::doubling_time() %>%
dplyr::glimpse()
#> Rows: 26,790
#> Columns: 15
#> Groups: class [19]
#> $ class <fct> 00_04, 00_04, 00_04, 00_04, 00_04, 00_04, 00_04, 0…
#> $ time <time_prd> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,…
#> $ incidence.fit <dbl> -17.891227, -17.395804, -16.873590, -16.331042, -1…
#> $ incidence.se.fit <dbl> 1.9111699, 1.9238465, 1.9194060, 1.9000358, 1.8681…
#> $ incidence.0.025 <dbl> 4.010032e-10, 6.419738e-10, 1.091671e-09, 1.950766…
#> $ incidence.0.5 <dbl> 1.698004e-08, 2.786752e-08, 4.697785e-08, 8.081996…
#> $ incidence.0.975 <dbl> 7.190010e-07, 1.209705e-06, 2.021596e-06, 3.348359…
#> $ growth.fit <dbl> 0.4798757, 0.4792888, 0.4776793, 0.4752744, 0.4723…
#> $ growth.se.fit <dbl> 0.05395200, 0.05584978, 0.05729669, 0.05835042, 0.…
#> $ growth.0.025 <dbl> 0.3741317, 0.3698252, 0.3653799, 0.3609097, 0.3565…
#> $ growth.0.5 <dbl> 0.4798757, 0.4792888, 0.4776793, 0.4752744, 0.4723…
#> $ growth.0.975 <dbl> 0.5856197, 0.5887523, 0.5899788, 0.5896391, 0.5880…
#> $ doubling_time.0.5 <dbl> 1.444431, 1.446200, 1.451072, 1.458415, 1.467596, …
#> $ doubling_time.0.025 <dbl> 1.183613, 1.177315, 1.174868, 1.175545, 1.178641, …
#> $ doubling_time.0.975 <dbl> 1.852682, 1.874256, 1.897059, 1.920556, 1.944248, …