Reproduction number timeseries diagram
Usage
plot_rt(
modelled = i_reproduction_number,
...,
mapping = if (interfacer::is_col_present(modelled, class)) ggplot2::aes(colour = class)
else ggplot2::aes(),
events = i_events
)
Arguments
- modelled
the modelled Rt estimate
A dataframe containing the following columns:
time (as.time_period + group_unique) - A (usually complete) set of singular observations per unit time as a `time_period`
rt.fit (double) - an estimate of the reproduction number
rt.se.fit (double) - the standard error of the reproduction number
rt.0.025 (double) - lower confidence limit of the reproduction number
rt.0.5 (double) - median estimate of the reproduction number
rt.0.975 (double) - upper confidence limit of the reproduction number
No mandatory groupings.
No default value.
- ...
Arguments passed on to
geom_events
- mapping
a
ggplot2::aes
mapping. Most importantly setting thecolour
to something if there are multiple incidence time series in the plot- events
Significant events or time spans
A dataframe containing the following columns:
label (character) - the event label
start (date) - the start date, or the date of the event
end (date) - the end date or NA if a single event
No mandatory groupings.
A default value is defined.
Examples
# example code
tmp = growthrates::england_covid %>%
time_aggregate(count=sum(count))
if (FALSE) {
tmp2 = tmp %>%
poisson_locfit_model() %>%
rt_from_growth_rate()
# comparing RT from growth rates with England consensus Rt:
plot_rt(tmp2,colour="blue")+
geom_errorbar(data=england_consensus_rt, mapping=aes(x=date-21,ymin=low,ymax=high),colour="red")
}