Function reference
-
describe_population()
- Describe the population in a summary table
-
describe_data()
- Describe the data types and consistence
-
compare_population()
- Compares the population against an intervention in a summary table
-
compare_outcomes()
- Compares multiple outcomes against an intervention in a summary table
-
group_comparison()
- Extract one or more comparisons for inserting into text.
-
compare_missing()
- Compares missing data against an intervention in a summary table
-
remove_missing()
- Remove variables that fail a missing data test from models
-
count_table()
- Group data count and calculate proportions by column.
-
extract_comparison()
- Get summary comparisons and statistics between variables as raw data.
-
as_t1_shape()
- Summarise a data set
-
as_t1_signif()
- Compares the population against an intervention
-
as_t1_summary()
- Summarise a population
-
as_huxtable(<t1_shape>)
- Convert a
t1_summary
object to ahuxtable
-
as_huxtable(<t1_signif>)
- Convert a
t1_signif
S3 class to a huxtable
-
as_huxtable(<t1_summary>)
- Convert a
t1_summary
object to ahuxtable
Supporting functions
Modify data for making tabular summaries, making missing data more explicit or by converting discrete data types to explicit factors.
-
make_factors()
- Convert discrete data to factors
-
explicit_na()
- Make NA values in factor columns explicit
-
get_footer_text()
- Get footer text if available
-
format_pvalue()
- Format a p-value
-
cut_integer()
- Cut and label an integer valued quantity
-
label_extractor()
- Extract labels from a dataframe column attributes
-
set_labels()
- Set a label attribute
-
extract_units()
- Extracts units set as dataframe column attributes
-
set_units()
- Title
-
default.format
- Default table layout functions
-
test_cols
- A list of columns for a test case
-
bad_test_cols
- A list of columns for a test case
-
diamonds
- A copy of the diamonds dataset
-
missing_diamonds
- A copy of the diamonds dataset
-
mnar_two_class_1000
- Missing not at random 2 class 1000 items
-
multi_class_negative
- A multi-class dataset with equal random samples in each class
-
one_class_test_100
- A single-class dataset with 100 items of random data
-
one_class_test_1000
- A single-class dataset with 1000 items of random data
-
two_class_test
- A two-class dataset with random data