
Function reference
-
describe_population() - Describe the population in a summary table
-
describe_data() - Describe the data types and consistence
-
compare_population() - Compares the population against an intervention in a summary table
-
compare_outcomes() - Compares multiple outcomes against an intervention in a summary table
-
group_comparison() - Extract one or more comparisons for inserting into text.
-
compare_missing() - Compares missing data against an intervention in a summary table
-
remove_missing() - Remove variables that fail a missing data test from models
-
count_table() - Group data count and calculate proportions by column.
-
extract_comparison() - Get summary comparisons and statistics between variables as raw data.
-
as_t1_shape() - Summarise a data set
-
as_t1_signif() - Compares the population against an intervention
-
as_t1_summary() - Summarise a population
-
as_huxtable(<t1_shape>) - Convert a
t1_summaryobject to ahuxtable
-
as_huxtable(<t1_signif>) - Convert a
t1_signifS3 class to a huxtable
-
as_huxtable(<t1_summary>) - Convert a
t1_summaryobject to ahuxtable
Supporting functions
Modify data for making tabular summaries, making missing data more explicit or by converting discrete data types to explicit factors.
-
make_factors() - Convert discrete data to factors
-
explicit_na() - Make NA values in factor columns explicit
-
get_footer_text() - Get footer text if available
-
format_pvalue() - Format a p-value
-
cut_integer() - Cut and label an integer valued quantity
-
label_extractor() - Extract labels from a dataframe column attributes
-
set_labels() - Set a label attribute
-
extract_units() - Extracts units set as dataframe column attributes
-
set_units() - Title
-
default.format - Default table layout functions
-
test_cols - A list of columns for a test case
-
bad_test_cols - A list of columns for a test case
-
diamonds - A copy of the diamonds dataset
-
missing_diamonds - A copy of the diamonds dataset
-
mnar_two_class_1000 - Missing not at random 2 class 1000 items
-
multi_class_negative - A multi-class dataset with equal random samples in each class
-
one_class_test_100 - A single-class dataset with 100 items of random data
-
one_class_test_1000 - A single-class dataset with 1000 items of random data
-
two_class_test - A two-class dataset with random data