Skip to contents

Table creators

Create tabular summaries of data in a simple manner.

describe_population()
Describe the population in a summary table
describe_data()
Describe the data types and consistence
compare_population()
Compares the population against an intervention in a summary table
compare_outcomes()
Compares multiple outcomes against an intervention in a summary table
group_comparison()
Extract one or more comparisons for inserting into text.
compare_missing()
Compares missing data against an intervention in a summary table
remove_missing()
Remove variables that fail a missing data test from models
count_table()
Group data count and calculate proportions by column.
extract_comparison()
Get summary comparisons and statistics between variables as raw data.

S3 functions

Create tabular summaries of data in a simple manner.

as_t1_shape()
Summarise a data set
as_t1_signif()
Compares the population against an intervention
as_t1_summary()
Summarise a population
as_huxtable(<t1_shape>)
Convert a t1_summary object to a huxtable
as_huxtable(<t1_signif>)
Convert a t1_signif S3 class to a huxtable
as_huxtable(<t1_summary>)
Convert a t1_summary object to a huxtable

Supporting functions

Modify data for making tabular summaries, making missing data more explicit or by converting discrete data types to explicit factors.

make_factors()
Convert discrete data to factors
explicit_na()
Make NA values in factor columns explicit
get_footer_text()
Get footer text if available
format_pvalue()
Format a p-value
cut_integer()
Cut and label an integer valued quantity
label_extractor()
Extract labels from a dataframe column attributes
set_labels()
Set a label attribute
extract_units()
Extracts units set as dataframe column attributes
set_units()
Title

Configuration

default.format
Default table layout functions

Test data

test_cols
A list of columns for a test case
bad_test_cols
A list of columns for a test case
diamonds
A copy of the diamonds dataset
missing_diamonds
A copy of the diamonds dataset
mnar_two_class_1000
Missing not at random 2 class 1000 items
multi_class_negative
A multi-class dataset with equal random samples in each class
one_class_test_100
A single-class dataset with 100 items of random data
one_class_test_1000
A single-class dataset with 1000 items of random data
two_class_test
A two-class dataset with random data