Deals with some annoying issues classifying integer data sets, such as ages, into groups. where you want to specify just the change over points as integers and clearly label the resulting ordered factor.
Arguments
- x
a vector of integer valued numbers, e.g. ages, counts
- cut_points
a vector of integer valued cut points which define the lower, inclusive boundary of each group
- glue
a glue spec that may be used to generate a label. It can use low, high, next_low, or label as values.
- lower_limit
the minimum value we should include (this is inclusive for the bottom category) (default -Inf)
- upper_limit
the maximum value we should include (this is also inclusive for the top category) (default Inf)
- ...
not used
Examples
cut_integer(stats::rbinom(20,20,0.5), c(5,10,15))
#> [1] 5‒9 5‒9 10‒14 5‒9 10‒14 10‒14 ≥15 10‒14 ≥15 5‒9 5‒9 5‒9
#> [13] 10‒14 10‒14 5‒9 10‒14 10‒14 10‒14 10‒14 5‒9
#> Levels: <5 < 5‒9 < 10‒14 < ≥15
cut_integer(floor(stats::runif(100,-10,10)), cut_points = c(2,3,4,6), lower_limit=0, upper_limit=10)
#> [1] 6‒10 <NA> <NA> 6‒10 <NA> <NA> 6‒10 <NA> 6‒10 <NA> 6‒10 <NA> <NA> <NA> 4‒5
#> [16] 4‒5 <NA> 2 <NA> 0‒1 <NA> 4‒5 <NA> <NA> 6‒10 6‒10 6‒10 6‒10 <NA> 4‒5
#> [31] 6‒10 2 <NA> <NA> 4‒5 <NA> 3 6‒10 4‒5 <NA> <NA> <NA> <NA> <NA> 6‒10
#> [46] <NA> <NA> 4‒5 6‒10 6‒10 4‒5 <NA> 4‒5 <NA> 3 4‒5 6‒10 6‒10 0‒1 <NA>
#> [61] <NA> <NA> <NA> <NA> 4‒5 6‒10 <NA> 2 <NA> <NA> <NA> <NA> 4‒5 <NA> 4‒5
#> [76] 6‒10 <NA> 6‒10 <NA> 6‒10 0‒1 <NA> 6‒10 <NA> 2 4‒5 <NA> 0‒1 6‒10 6‒10
#> [91] 4‒5 <NA> 4‒5 <NA> <NA> <NA> <NA> 0‒1 4‒5 6‒10
#> Levels: 0‒1 < 2 < 3 < 4‒5 < 6‒10
cut_integer(1:10, cut_points = c(1,3,9))
#> [1] 1‒2 1‒2 3‒8 3‒8 3‒8 3‒8 3‒8 3‒8 ≥9 ≥9
#> Levels: <1 < 1‒2 < 3‒8 < ≥9