Converts NA values in any factors in the dataframe into a new level -
This is a thin wrapper for forcats::fct_explicit_na()
but with missing
value level added regardless of whether any values missing. This forces an
empty row in count tables.
Arguments
- df
the data frame
- na_level
a label for NA valued factors
- hide_if_empty
dont add a missing data category if no data is missing
Examples
# before
missing_diamonds %>% dplyr::group_by(cut) %>% dplyr::count()
#> # A tibble: 6 × 2
#> # Groups: cut [6]
#> cut n
#> <ord> <int>
#> 1 Fair 1454
#> 2 Good 4462
#> 3 Very Good 10816
#> 4 Premium 12460
#> 5 Ideal 19361
#> 6 NA 5387
# after
missing_diamonds %>% explicit_na() %>% dplyr::group_by(cut) %>% dplyr::count()
#> # A tibble: 6 × 2
#> # Groups: cut [6]
#> cut n
#> <fct> <int>
#> 1 Fair 1454
#> 2 Good 4462
#> 3 Very Good 10816
#> 4 Premium 12460
#> 5 Ideal 19361
#> 6 <missing> 5387