Function reference
-
apparent_prevalence() - Apparent prevalence from known prevalence
-
as_tibble(<beta_dist>) - convert a beta distribution to a tibble
-
as_tibble(<beta_dist_list>) - convert a list of betas to a tibble
-
bayesian_component_logit_model() - Bayesian simpler model true prevalence for component
-
bayesian_component_simpler_model() - Bayesian simpler model true prevalence for component
-
bayesian_panel_complex_model() - Bayesian models true prevalence for panel
-
bayesian_panel_logit_model() - Bayesian logit model true prevalence for panel
-
bayesian_panel_simpler_model() - Bayesian simpler model true prevalence for panel
-
bayesian_panel_true_prevalence_model() - Execute one of a set of bayesian models
-
bayesian_true_prevalence_model() - Execute one of a set of bayesian models
-
beta_dist() - Generate a beta distribution out of probabilities, or positive and negative counts
-
beta_fit() - Fit a beta distribution to data using method of moments
-
beta_params() - Generate concave beta distribution parameters from mean and confidence intervals
-
ci_to_logitnorm() - Generate mu and sigma parameters for a logitnormal distribution
-
.input_data - Dataframe format for component test results
-
.input_panel_data - Dataframe format for panel test results
-
.output_data - Dataframe format for true prevalence results
-
format(<beta_dist>) - Format a beta distribution
-
format(<beta_dist_list>) - Format a beta distribution list
-
fp_p_value() - Significance of an uncertain test result
-
fp_signif_level() - Identify the minimum number of positive test result observations needed to be confident the disease has a non-zero prevalence.
-
get_beta_shape() - Get a parameter of the
beta_dist
-
get_beta_shape(<beta_dist>) - Get a parameter of the
beta_dist
-
get_beta_shape(<beta_dist_list>) - Get a parameter of the
beta_dist
-
inv_logit() - The inverse logit function
-
length(<beta_dist>) - Detect the length of a beta distribution
-
length(<beta_dist_list>) - Detect the length of a beta distribution list
-
logit() - The logit function
-
odds_ratio_ve()odds_ratio_ve() - Calculate a vaccine effectiveness estimate based on an odds ratio
-
optimal_performance() - Test optimal performance
-
panel_prevalence() - Expected test panel prevalence assuming independence
-
panel_sens() - Test panel combination sensitivity
-
panel_sens_estimator() - Estimate test panel combination sensitivity
-
panel_spec() - Test panel combination specificity
-
prevalence_lang_reiczigel() - True prevalence from apparent prevalence with uncertainty
-
prevalence_panel_lang_reiczigel() - Lang-Reiczigel true prevalence for panel
-
print(<beta_dist>) - Print a beta distribution
-
print(<beta_dist_list>) - Print a beta distribution
-
relative_risk_ve() - Calculate a vaccine effectiveness estimate based on a risk ratio
-
rep(<beta_dist>) - Repeat a
beta_dist
-
rogan_gladen() - True prevalence from apparent prevalence
-
sens_prior() - The default prior for specificity
-
spec_prior() - The default prior for specificity
-
true_panel_prevalence() - Calculate an estimate of true prevalence for a single panel and components
-
true_prevalence() - Vectorised true prevalence estimates
-
uncertain_panel_rogan_gladen() - Rogan-Gladen true prevalence for panel with resampling
-
uncertain_panel_sens_estimator() - Propagate component test sensitivity and specificity into panel specificity assuming a known set of observations of component apparent prevalence
-
uncertain_panel_spec() - Propagate component test specificity into panel specificity
-
uncertain_rogan_gladen() - True prevalence from apparent prevalence with uncertainty
-
underestimation_threshold() - Test underestimation limit
-
uniform_prior() - A uniform prior
-
uninformed_prior() - Uninformative prior
-
update_posterior() - Update the posterior of a
beta_dist
-
update_posterior(<beta_dist>) - Update the posterior of a
beta_dist
-
update_posterior(<beta_dist_list>) - Update the posterior of a
beta_dist