Function reference
-
apparent_prevalence()
- Apparent prevalence from known prevalence
-
as_tibble(<beta_dist>)
- convert a beta distribution to a tibble
-
as_tibble(<beta_dist_list>)
- convert a list of betas to a tibble
-
bayesian_component_logit_model()
- Bayesian simpler model true prevalence for component
-
bayesian_component_simpler_model()
- Bayesian simpler model true prevalence for component
-
bayesian_panel_complex_model()
- Bayesian models true prevalence for panel
-
bayesian_panel_logit_model()
- Bayesian logit model true prevalence for panel
-
bayesian_panel_simpler_model()
- Bayesian simpler model true prevalence for panel
-
bayesian_panel_true_prevalence_model()
- Execute one of a set of bayesian models
-
bayesian_true_prevalence_model()
- Execute one of a set of bayesian models
-
beta_dist()
- Generate a beta distribution out of probabilities, or positive and negative counts
-
beta_fit()
- Fit a beta distribution to data using method of moments
-
beta_params()
- Generate concave beta distribution parameters from mean and confidence intervals
-
ci_to_logitnorm()
- Generate mu and sigma parameters for a logitnormal distribution
-
.input_data
- Dataframe format for component test results
-
.input_panel_data
- Dataframe format for panel test results
-
.output_data
- Dataframe format for true prevalence results
-
format(<beta_dist>)
- Format a beta distribution
-
format(<beta_dist_list>)
- Format a beta distribution list
-
fp_p_value()
- Significance of an uncertain test result
-
fp_signif_level()
- Identify the minimum number of positive test result observations needed to be confident the disease has a non-zero prevalence.
-
get_beta_shape()
- Get a parameter of the
beta_dist
-
get_beta_shape(<beta_dist>)
- Get a parameter of the
beta_dist
-
get_beta_shape(<beta_dist_list>)
- Get a parameter of the
beta_dist
-
inv_logit()
- The inverse logit function
-
length(<beta_dist>)
- Detect the length of a beta distribution
-
length(<beta_dist_list>)
- Detect the length of a beta distribution list
-
logit()
- The logit function
-
odds_ratio_ve()
odds_ratio_ve()
- Calculate a vaccine effectiveness estimate based on an odds ratio
-
optimal_performance()
- Test optimal performance
-
panel_prevalence()
- Expected test panel prevalence assuming independence
-
panel_sens()
- Test panel combination sensitivity
-
panel_sens_estimator()
- Estimate test panel combination sensitivity
-
panel_spec()
- Test panel combination specificity
-
prevalence_lang_reiczigel()
- True prevalence from apparent prevalence with uncertainty
-
prevalence_panel_lang_reiczigel()
- Lang-Reiczigel true prevalence for panel
-
print(<beta_dist>)
- Print a beta distribution
-
print(<beta_dist_list>)
- Print a beta distribution
-
relative_risk_ve()
- Calculate a vaccine effectiveness estimate based on a risk ratio
-
rep(<beta_dist>)
- Repeat a
beta_dist
-
rogan_gladen()
- True prevalence from apparent prevalence
-
sens_prior()
- The default prior for specificity
-
spec_prior()
- The default prior for specificity
-
true_panel_prevalence()
- Calculate an estimate of true prevalence for a single panel and components
-
true_prevalence()
- Vectorised true prevalence estimates
-
uncertain_panel_rogan_gladen()
- Rogan-Gladen true prevalence for panel with resampling
-
uncertain_panel_sens_estimator()
- Propagate component test sensitivity and specificity into panel specificity assuming a known set of observations of component apparent prevalence
-
uncertain_panel_spec()
- Propagate component test specificity into panel specificity
-
uncertain_rogan_gladen()
- True prevalence from apparent prevalence with uncertainty
-
underestimation_threshold()
- Test underestimation limit
-
uniform_prior()
- A uniform prior
-
uninformed_prior()
- Uninformative prior
-
update_posterior()
- Update the posterior of a
beta_dist
-
update_posterior(<beta_dist>)
- Update the posterior of a
beta_dist
-
update_posterior(<beta_dist_list>)
- Update the posterior of a
beta_dist