Skip to contents

All functions

apparent_prevalence()
Apparent prevalence from known prevalence
as_tibble(<beta_dist>)
convert a beta distribution to a tibble
as_tibble(<beta_dist_list>)
convert a list of betas to a tibble
bayesian_component_logit_model()
Bayesian simpler model true prevalence for component
bayesian_component_simpler_model()
Bayesian simpler model true prevalence for component
bayesian_panel_complex_model()
Bayesian models true prevalence for panel
bayesian_panel_logit_model()
Bayesian logit model true prevalence for panel
bayesian_panel_simpler_model()
Bayesian simpler model true prevalence for panel
bayesian_panel_true_prevalence_model()
Execute one of a set of bayesian models
bayesian_true_prevalence_model()
Execute one of a set of bayesian models
beta_dist()
Generate a beta distribution out of probabilities, or positive and negative counts
beta_fit()
Fit a beta distribution to data using method of moments
beta_params()
Generate concave beta distribution parameters from mean and confidence intervals
ci_to_logitnorm()
Generate mu and sigma parameters for a logitnormal distribution
.input_data
Dataframe format for component test results
.input_panel_data
Dataframe format for panel test results
.output_data
Dataframe format for true prevalence results
format(<beta_dist>)
Format a beta distribution
format(<beta_dist_list>)
Format a beta distribution list
fp_p_value()
Significance of an uncertain test result
fp_signif_level()
Identify the minimum number of positive test result observations needed to be confident the disease has a non-zero prevalence.
get_beta_shape()
Get a parameter of the beta_dist
get_beta_shape(<beta_dist>)
Get a parameter of the beta_dist
get_beta_shape(<beta_dist_list>)
Get a parameter of the beta_dist
inv_logit()
The inverse logit function
length(<beta_dist>)
Detect the length of a beta distribution
length(<beta_dist_list>)
Detect the length of a beta distribution list
logit()
The logit function
odds_ratio_ve() odds_ratio_ve()
Calculate a vaccine effectiveness estimate based on an odds ratio
optimal_performance()
Test optimal performance
panel_prevalence()
Expected test panel prevalence assuming independence
panel_sens()
Test panel combination sensitivity
panel_sens_estimator()
Estimate test panel combination sensitivity
panel_spec()
Test panel combination specificity
prevalence_lang_reiczigel()
True prevalence from apparent prevalence with uncertainty
prevalence_panel_lang_reiczigel()
Lang-Reiczigel true prevalence for panel
print(<beta_dist>)
Print a beta distribution
print(<beta_dist_list>)
Print a beta distribution
relative_risk_ve()
Calculate a vaccine effectiveness estimate based on a risk ratio
rep(<beta_dist>)
Repeat a beta_dist
rogan_gladen()
True prevalence from apparent prevalence
sens_prior()
The default prior for specificity
spec_prior()
The default prior for specificity
true_panel_prevalence()
Calculate an estimate of true prevalence for a single panel and components
true_prevalence()
Vectorised true prevalence estimates
uncertain_panel_rogan_gladen()
Rogan-Gladen true prevalence for panel with resampling
uncertain_panel_sens_estimator()
Propagate component test sensitivity and specificity into panel specificity assuming a known set of observations of component apparent prevalence
uncertain_panel_spec()
Propagate component test specificity into panel specificity
uncertain_rogan_gladen()
True prevalence from apparent prevalence with uncertainty
underestimation_threshold()
Test underestimation limit
uniform_prior()
A uniform prior
uninformed_prior()
Uninformative prior
update_posterior()
Update the posterior of a beta_dist
update_posterior(<beta_dist>)
Update the posterior of a beta_dist
update_posterior(<beta_dist_list>)
Update the posterior of a beta_dist