Calculate a vaccine effectiveness estimate based on a risk ratio
Source:R/relative_risk_ve.R
relative_risk_ve.Rd
The RR method cannot be used in test negative designs where disease positive relates to vaccine treatable disease and disease negative relates to non vaccine treatable disease. It is only relevant in prospective designs with a vaccinated and unvaccinated group.
Usage
relative_risk_ve(
vaccinatedCase,
unvaccinatedCase,
vaccinatedControl,
unvaccinatedControl,
confint = c(0.025, 0.975)
)
Arguments
- vaccinatedCase
count of disease positive vaccine positive
- unvaccinatedCase
count of disease positive vaccine negative
- vaccinatedControl
count of disease negative vaccine positive
- unvaccinatedControl
count of disease negative vaccine positive
- confint
the confidence intervals
Examples
tibble::tibble(
N_vacc = 42240,
N_unvacc = 42256,
N_vacc_pn_pos = 49,
N_unvacc_pn_pos = 90
) %>% dplyr::mutate(
relative_risk_ve(N_vacc_pn_pos, N_unvacc_pn_pos, N_vacc-N_vacc_pn_pos, N_unvacc-N_unvacc_pn_pos)
)
#> # A tibble: 1 × 10
#> N_vacc N_unvacc N_vacc_pn_pos N_unvacc_pn_pos RR RR.q.0.025 RR.q.0.975
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 42240 42256 49 90 0.545 0.384 0.772
#> # ℹ 3 more variables: VE.RR <dbl>, VE.RR.q.0.025 <dbl>, VE.RR.q.0.975 <dbl>
# dplyr::bind_rows(lapply(
# c("katz.log", "adj.log", "bailey", "koopman", "noether", "sinh-1", "boot"),
# function(m) {tibble::as_tibble(
# 1-DescTools::BinomRatioCI(N_vacc_pn_pos, N_vacc, N_unvacc_pn_pos, N_unvacc, method = m)
# ) %>% dplyr::mutate(
# method = m
# )}
# ))