Function reference
-
as.var_grp_df()
- The
var_grp_df
dataframe subtype
-
col_syms()
- Column names as symbols
-
ensyms2()
- Convert a parameter into a list of symbols
-
var_group()
- Extract a definition of column groups from function parameters
-
var_group_compare()
- Cross compare subgroups of data to each other
-
var_group_count()
- The number of major groups (
z
categories) in avar_grp_df
-
var_group_formula()
- Export
var_group
metadata as a formula
-
var_group_modify()
- Apply a function to each
z
group usinggroup_modify()
-
var_group_nest()
- Nest a
var_grp_df
by thez
columns
-
var_grps()
- Extract grouping info frm a
var_grp_df
-
var_has_groups()
- Does this
var_grp_df
have more than one major group?
-
var_subgroup_count()
- The number of major and sub groups (
z
andy
categories) in avar_grp_df
-
var_subgroup_nest()
- Nest a
var_grp_df
by thez
andy
columns
Validating inputs
Functions for making sure that function inputs are consistent, and handling missing values
-
check_consistent()
- Check function parameters are conform to a set of rules
-
check_date()
- Checks a set of variables can be coerced to a date and coerces them
-
check_integer()
- Checks a set of variables can be coerced to integer and coerces them
-
check_numeric()
- Checks a set of variables can be coerced to numeric and coerces them
-
recycle()
- Strictly recycle function parameters
-
resolve_missing()
- Resolve missing values in function parameters and check consistency
-
escalate()
- Cause warnings to create an error
-
get_fn_args()
- Fully evaluate the arguments from a function call as a named list.
-
get_fn_name()
- Get the name of a function
-
optional_fn()
- Get an optional function without triggering a CRAN warning
-
glimpse.var_grp_df()
format(<var_grp_df>)
print(<var_grp_df>)
is.var_grp_df()
var_grp_df
S3 Methods