Branch a dplyr pipeline based on a set of conditions
Value
the result of applying purrr function to .x in the case where
predicate evaluates to true. Both predicate and function can refer to
the pipeline dataframe using .x
Examples
iris %>% switch_pipeline(
  is_col_present(.x, Species) ~ .x %>% dplyr::rename(new = Species)
) %>% dplyr::glimpse()
#> Rows: 150
#> Columns: 5
#> $ Sepal.Length <dbl> 5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.…
#> $ Sepal.Width  <dbl> 3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.…
#> $ Petal.Length <dbl> 1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.…
#> $ Petal.Width  <dbl> 0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.…
#> $ new          <fct> setosa, setosa, setosa, setosa, setosa, setosa, setosa, s…